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Abstract

We develop an 6(k2n + nlogn) algorithm to obtaip a preemp-

tive schedule that minimizes Lmax when n jobs with given

memory requirements are to be scheduled on m processors

In~m) of given memory sizes. k is the number of distinct due

dates. The value of the minimum L ma can itself be found in

O(kn + nlogn) time.
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1. Introduction

The problem of scheduling n jobs on a multiprocessor system

consisting of m processors, each having its own independent

memory of size Ji has been considered by Kafura and Shen

[3]. Associated with each job is a processing time ti and a

memory requirement mi* Job j can be processed on processor

i iff m. < J.. No job can be simultaneously processed on

two different processors and no processor can process more

than one job at any given time instance. In a preemptive

schedule, it is possible to interrupt the processing of a

job and resume it later on a possibly different processor.

In a nonpreemptive schedule, each job is processed without

interruption on a single processor.

Obtaining minimum finish time nonpreemptive schedules

is NP-hard even when m = 2 and J1 = J2 [2]. Hence, Kafura

and Shen [3] study the effectiveness of several heuristics

for nonpreemptive scheduling. For the preemptive case, they

develop an O(nlogn) algorithm that obtains minimum finish

time schedules (without loss of generality, we may assume n

> m). Their algorithm begins by first computing the finish

time, f*, of a minimum finish time schedule. This is

done as follows. First, the jobs and processors are reor-

dered such that JJ 2  " >.. J and mI > m 2 > ... > Mn

This reordering takes O(nlogn) time (again, we assume n

m). Let Fi be the set of all jobs that can be processed

only on processors 1, 2, ... , i because of their memory
requirements. Let Xi be the sum of the processing require-

ments of the jobs in Fi. Xi = 0 iff F. i S. Kufura and Shen

[3J show that

f* = max[ maxi[ti), maxi[Xi/il. (1.1)

The jobs may now be scheduled in the above order

(mi1 m 2 >.. mn ) using f* and McNaughton's rule [4].
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In this paper, we extend the work of [3) to the case
when each job has a due time di associated with it. Every

job is released at a common release time c0 .  We are

interested in first determining whether or not the n jobs

can be preemptively scheduled in such a way that every job

completes by its due time. A schedule that has this pro-

perty is called a feasible schedule.

In Section 2, we show that the existence of a feasible

schedule can be determined in polynomial time using network

flow techniques. The complexity of the algorithm that

results from this approach is O(kn(n+kr)log2(n+kr)) where k

is the number of distinct due dates and r the number of dif-

ferent memory sizes in [Jl, J2 ' ...-, Jm
. In fact, a feasi-

ble schedule (whenever one exists) may be obtained in this

much time. In Section 3, we develop another algorithm for

this problem. This algorithm is considerably harder to

prove correct but has a complexity that is only O(kn +

nlogn). A feasible schedule can be constructed in O(k2n +

nlogn) time. In arriving at the algorithm of Section 3, we

develop a necessary and sufficient condition for the

existence of a feasible schedule. With the help of this

condition, in Section 4, we develop an algorithm to obtain a

schedule that minimizes the maximum lateness. This algo-

rithm is also of complexity O(k2 n + nlogn).

Sahni [5] and Sahni and Cho [6 and 7] have done work

related to that reported here. They have considered preemp-

tive scheduling of n jobs with due dates when

J J2 " Jm For the special case when all memory

sizes are the same, Sahni [5] has developed an O(nlogmn)
algorithm to obtain a feasible schedule (when one exists).

Sahni and Cho [6 and 7) have obtained efficient algorithms

for the case when J = J *.' = Jm and the processors run

at different speeds.
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2. The Network Flow Algorithm

In this section, we develop a conceptually simple algorithm

to determine a feasible schedule whenever such a schedule

exists. This algorithm consists of two phases. Let

CI, C2 , Ck be the distinct due times in the multiset

[d1, d2, ... , dnl. We may assume that c0 < c1 < .. < ck

(recall that c0 is the common release time). In the first

phase of our algorithm, we determine the amount 6i, j of job

i that is to be processed in the interval cj 1 to cj. This

is done using network flows. In addition to the source (s)

and sink (t) nodes, the network to be constructed consists

of job nodes, interval nodes, and summation nodes.

For each job there is a job node. The source node con-

nects to each job node via a directed edge. The capacity of

the edge to job node i is ti. If job i has a due time cj,

then there are exactly j interval nodes corresponding to it.

These nodes represent the time intervals

Ec0 ,cl], [cic 2], ..., [cjcl,Cj]. From each job node there

is a directed edge to each of its interval nodes. Each such

edge has a capacity equal to the length of the interval

represented by the interval node. In Figure 2.1, the inter-

val node labeled (i,j) corresponds to job i and time inter-

val [cj-l,Cj].

The summation nodes are divided out into k summation

chains with each chain being used to sum up the flows

through each of the k sets of interval nodes. Let

0i' Q2' "*' Or (1Q 2 >2 > Q d b6 the distinct memory

sizes in the multiset J1 , 12 ..., Jm). Let zi be the

number of processors of size Qi, and let pi = jz. Let

Qr+l m 0. There are exactly r summation nodes in each sum-

mation chain. The uth node in chain j is labeled (u,j) in

Figure 2.1. There is an edge with capacity cj-cj_1  from

the interval node (i,j) to the summation node (u,j) iff



Qu+I < mi --(*u From node u of summation chain j to node

u+l there is an edge with capacity p (cj-cj-1 ) '

l<u<r, ljk. The last node of each chain j connects to the

sink node and has capacity m(cj-cj-l).
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We claim that there is a feasible schedule for the n

jobs iff the maximum flow through the constructed network is
n
Z t1. To see this, first observe that the flow cannoti=1 l

n n
exceed z ti . Suppose that there is a flow of k ti in the

i11i=l 1

network. Let 6i, j be the flow in the edge from job node i

to interval node (i,j). From the capacity on the edges from

job nodes to interval nodes, it is clear that
6', j ± cj-cj I . From this, the capacities on the edges from

summation nodes, and Eq.(l.l), it is clear that 6. . , 1 < i
< n can be scheduled in the interval [cjlCj ] using the

Kafura-Shen algorithm, 1 < j < k. Hence, there is a feasi-
n

ble schedule when the maximum flow equals ti. It is
i=l1

readily seen that the reverse is also true; i.e., when there
n

is a feasible schedule there is a flow of value j t.
i=l

So, in phase 1 of our algorithm we construct the flow

network and determine the maximum flow. If this is less
n

than ti , then no feasible schedule exists. If the max-
i=l1

n
imum flow equals z ti , then in phase 2 a feasible schedule

i=l
is constructed using the Kafura-Shen algorithm together with

the interval flows 6i j in the maximum flow.

In determining the complexity of this approach, we

first note that the interval nodes are easily eliminated.

Since exactly one edge enters an interval node and exactly

one leaves, these two edges may be combined into one. The1 total number of nodes in the resulting network is n+kr+2.

The number of edges is O(kn). A maximum flow in a v node e

edge network can be found in O(evlog2v) time El). Hence,

the maximum flow in our network can be determined in
O(kn(n+kr)log2(n+kr)) time. Following this, k applications

of the Kafura-Shen algorithm are needed. Hence the total
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time needed to find a feasible schedule (when one exists) is

O(kn(n+kr)log 2(n+kr)).

3. An O(k2n + nlogn) Algorithm

An O(k2 n + nlogn) algorithm (where k is the number of dis-

tinct due times) to obtain a feasbile preemptive schedule

for a set of n jobs may be arrived at in the following way.

As before, each job is characterized by a triple (ti,di.,mi)

where t is the task time of job i; di is its due time; and

mi  its memory requirement. Let cl, c2, ... ck,

cck, denote the distinct due times in the

multiset [dI , d2, ..., dn). Let c0 be the common release

time for the n jobs. Without loss of generality, we may

assume that c0 < cI . Further, we may assure that the jobs f
are ordered by their memory requirements; i.e.,
mlI_ m2 _.. >m n .

The m processors are assumed to be ordered by their

memory size, i.e., J > J2  .... Jm Let

M0 n, Mill M2# ... Mr=m be such that processors

Mi+l, Mi+2, ..., Mi+1 have the same memory size and

J Mi+> JMi+l+l1 0o<i<r (for convenience, assume that Jm+i=O).

The processors Mi+l, ..., Mi 1 define processor class i+l,

0Ci<r. Similary, let N0 =0, NJ' N2, ..., Nr=n be such that

jobs Ni+l, Ni+2, ..., Ni+, have a memory requirement that is

larger than JMi+l+1 but not larger than J , <i<r. It
Mi~l~l i+l

should be clear that a job j such that Ni < j Ni+1 can be

processed only on processors 1, 2, ..., Mi+I. Jobs

Ni+l, ..., Ni+1 define job class i+l.

It is easy to see that in every feasible schedule for

the n jobs, at least

I)St i  di .cj

b(ij) ti-mint,di-c otherwise
Imom-i.......



amount of job i must be completed by c., li~n, O<jk.

Observe that if there exist i and j such that b(ij)>cj-c0 ,

then there is no feasible schedule.

Of the minimum amount b(i,j) that must be completed

before cj , at most

t a(i,j) = minfb(i,j),c-c 0 I

1

can be completed by cI .

Define B(i,j) to be the sum of the b(q,j)s for those

jobs q in job class i. Define A(i,j) in a similar manner.

Specifically,

N i

B(i,j) = b(q,j), l<i'r, 0<j<k,
q=Ni +1

and

A(i,j) = z a(q,j), li<r, 0<j<k.
q=Ni +1

B(i,j) gives the minimum amount of job class i that must be'

completed by cj. A(i,j) gives the maximum amount of B(ij)

that can be done by cI.

One may easily verify that

0 < b(i,j) < b(i,j+l), l<i<n, O<j<k. (3.1a)

0 < a(i,j) < a(i,j+l), 1<i<n, 0(j<k. (3.1b)

0 < B(i,j) < B(i,j+l), l<i<r, 0<j<k. (3.1c)

0 < A(i,j) < A(i,j+l), 1<i<r, O<j<k. (3.1d)
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Lemma 1 obtains an interesting inequality between A(i,j) and

B(i,j). This inequality will be used later.

Lemma 1: If tq < dq-Co, 1 < q :< n, then

B(i,j)-A(i,j) < B(i,j), l<i<r, l<j<k.
cj-- cj-co -_

Proof: Assume that tq < dq-CO, 1 < q < n. Let q be in

the range EN i-+l,Ni]. Since a(q,j) = minfb(q,j), cl-co1,

a(q,j) = b(q,j) or a(q,j) = Cl-C 0.

If a(q,j) = b(q,j), then

C 1-C Ob(q,j) < a(q,j)
cj-c 0

as c I a< Cj.

If a(q,j) = C1 -c0 , then since tq < dq-C0  implies

b(q,j) < cj-c 0 , we get

Cl-C0b(q,j) < cl-c 0 = a(q,j).

cj-c 0

So, in both cases we have

C1-C0 -b(qj) < a(q,j).

Hence,

cl-cO Ni
c b(q,j) < q a(q,j)c j-C0qNi1 l--=il

or

1 0 B (ij) < A(ij)

c.-c0
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or

Cl-CZB i j 0 C- C A(i, j)
Cj-c cj-c 1

or

[B(i j)-A(ij)] < B(i,j)
cj-cl

or

B~ij)A~il)< B(ij). [Cj-c - cj-co

Define a capacity function C(i,j) such that

C(i,j) = (Mi-M i-)(c j-c), <i<r, O<jk.

C(ij) gives the available processing capacity in processor

class i from the release time c0 to the due time cj.

Let w be the set of all nonincreasing functions a with
domain (0, 1, 2, ..., ri and range t0, 1, ..., ki. Recall

that r is the number of processor classes and k the number

of distinct due times. Thus

w I I a:0,i ... ,r}->Ol..... k and a(i)a(i+l),0<i<r}.

w defines the set of profile functions. For example, con-

sider the case r = 4, k = 5, and the profile function (T such
that a(0) = C(l) = C(2) = 4; a(3) = 2; and a(4) = 1. Figure

3.1 displays a pictorially.

One readily sees that if the given .ob set has a feasi-

ble schedule, then it must be the case that
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Processor

class C 0 C c 2 c3 c4 c5

1

2

3

4

Figure 3.1 Example a

s S

j B(i,a(i)) < £ C(i,o(i))
i=l i=l

for all s, l<s<r and all a 4 iT. In particular, if there is

a feasible schedule, then

r r
£ B(ia(i)) < i C(i,a(i)) (3.2)

i=l i1l

for every 7 4 v. We shall show in Theorem 3.1 that there is

a feasible schedule iff (3.2) holds.

We note that for any O 4 W, if B(q,a(q)) > C(q,a(q))

then at least B(q,a(q)) - C(q,a(q)) amount of class q jobs

must be done on processor classes 1, 2, ..., q-1 by time

CC(q).. - Hence B(q,a(q)) - C(q,d(q)) gives a lower bound on

the overflow from processor class q to processor classes 1,

2, ... , q-1.
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Define .j as below:

S= ( I a 4 w and a(i)<j, 0<i'r}.

We see that for any profile a 4 .j,

r r
I B(q,a(q)) - i C(q,a(q))

q=i+l q=i+l

-r gives a lower bound on the total overflow under this profile

from processor classes i+l, ., r to processor class i,

0<i<r. Hence,

r r
Z(i,j) = max{ 5 B(q,a(q)) - 1 C(q,a(q))} (3.3)

04.j q=i+l q=i+l

is also a lower bound on the overflow from processor classes

r, r-l ,..., i+l to the processor class i up to time c .

From (3.3), it follows that Z(r,j) = 0, 0<j<k. Also,
if ti < di-c0 , l<i<n, then b(i,0) = 0 ,l<i<n and we obtain

Z(i,0) = 0, 0<i<r. (3.4)

Furthermore, since 0:(0,l,...,r}->10) is in .j for all j, it

follows from (3.3) that when ti < di-c0 , l<i<n, then

Z(i,j) > 0, 0<i<r, 0<jk. (3.5)

From (3.3) we may obtain a simple recurrence for
Z(i,j). Let a' 4 . be the I at which

r r
i B(q,a(q)) - j C(q,C(q))

q=i+l q=i+l

is maximum. Assume that i < r. If a'(i+l) 0 j, then Z(i,j)

Z(i,j-l). If o'(i+l) = j, then
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r r

q=i+l q=i+l

r r
1 B(q,a'(q))- 1 C(q,o"(q))+B(i+l..j)-C(i+1,j)

q=i+2 q=i4-2

=Z(iii, j)-iB(i+1, j)-C(i+l, j).

This yields%

0 if i = r

Z(i~j)= IZ(i,0) if j = 0

Ia[~~-) Zilj)-sB(i4-l, j)-C(iIl, j) otherwise.

(3.6)

Define D(i,j) as below:

D(i,j) = I0j=

IC(i,l) otherwise.

Let a' 4 vT be a profile function. B(q,aiq))-A(q,O'(q))

is a lower bound on the amount of class q job processing

that must be done between cland c0'(q). Hence, B(q,di~q))-

A(q,d'(q))-C(q,0'(q))+D(q,a(q)) (abbreviated as [B-A-

C+D](q,ajq))) is a lower bound on the overflow from class q

jobs from time c 1  to time c a(q)' Consequently X(i,j) as

defined below:

X (i, j) = max [B-AC+D](q, a(q)) (3.7)
0'41r qi+l

is a lower bound on the overflow from processor classes

r,...,i+l to the class i from time c, to cj.

From (3.7), it follows that
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X(r,j) = 0, O<j-k. (3.8)

Also, if ti < di-c0 , 1<i<n, then b(i,0) = a(i,O) = 0, and

b(i,l) = a(i,l), l<i<n. From this and (3.7), we obtain

X(i,0) = X(i,l) = 0, 0<i<r. (3.9)

From (3.7) the recurrence

0 i=r

X(i,j) = I X(i,0) j=0 (3.10)

max[X(ij-1),[X+B-A-C+D](i+I,j)1 otherwise

may be obtained in the same way as (3.6) was obtained from

(3.3).

From (3.10), we see that if ti < di-c 0 , 1<i<n, then

X(ij) > 0, 0<i<r, 0<j<k. (3.11)

The difference between Z and X will play an important

role in the development of our algorithm. Define:

Y(i,j) = Z(i,j)-X(i,j), 0<i<r, 0<jgk.

We establish in Lemma 3 an important inequality on Y.

Before proving this Lemma, we obtain some results needed in

its proof.

Lemma 2: If tq < dq - c0 , 1 < q < n, then

(Cj-co)X(i,j ) < (cj-Cl)Z(i,j), O~i~r, O jk.

Proof: Assume that t q< dq - c , 1 < q < n. The proof is

by induction on i and j.
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Induction Base(1) When i = r, X(i,j) = Z(i,j) = 0.

Induction Hypothesis(1) Assume that the inequality is

correct for all j when 0 < i = p < r.

Induction Step(l) When i = p-l, the inequality may be

shown correct by induction on j.

I.B.(2) When j = 0 or 1, X(p-l,j) = 0 and Z(p-l,j) > 0.

I.H.(2) Assume that the inequality is correct when k>j=q>l.

I.S.(2) Let j = q+l. From Eq. (3.10), we see that there
are two possibilities for X(p-l,q+l).

Case(i) X(p-l,q+l) = X(p-l,q): In this case,

(cq-c0 )X(p-l,q+l) = (cq-c0 )X(p-l,q)

<(C q-Cl)Z(p-l,q )  (I.H.(2))

< (cq-c 1 )Z(p-l,q+l) (Eq.(3.6))

Since cq - c0 > Cq - c, > 0, we get

X(p-l,q+l) < Z(p-l,q+l)

or

1 (Cq+l-Cq)X(p-l,q+l) < (Cq+l-Cq)Z~p-l,q+l).

Adding this inequality to the previous one yeilds:

(cq+l - c0 )X(p-l,q+l) < (cq+l -cl)Z(p-l,q+l).
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Case(ii) X(p-l,q+l) = [X+B-A-C+D](p,q+l): Now, we
obtain:

X(p-l,q+l) = [X+B-A-C+D](p,q+l)
C -cC cq+l 1Cq+l-C1

Using I.H.(1), Lemma 1, and the equality

C(p,q+l)-D(p,q+l) M -C(p,l)C q+lCl = Mp- 1 = Cq+lCo'

we obtain:

X(p-l,q+l) < Z(p,q+l) + B(p,q+l) - C(p,q+l)
Cq+ 1 - c - Cq+l -Co

< Z(p-l,q+l) (Eq.(3.10)) [
q+l c0

Corollary 1: If tq < d q-C, 1 < q < n, then

Y(i,j) > 0, 0<i<r, 0<j<k.

Proof: For j > 1, this follows from Lemma 2 and the fact

cj-c 0  > cj-c I > 0. For j = 0, this follows from Eqs. (3.4)

and (3.9). ]

Lemma 3: If tq < dq - c0, 1 < q c n, then

Y(i,j) > Y(i,j-1), O<i<r, ljk.

Proof: Assume that tq < dq - c0 , 1 < q < n. The proof is

by induction on i and j.

I.B.(1) When i = r, Y(i,j) = Y(i,j-l) = 0, lj.k.

I.H.(1) Assume that Y(i,j) > Y(i,j-1) for all j, when I < u

( i < r where u is an arbitrary integer in the range El,r-
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1].

I.S.(1) We need to show that Y(u,j) > Y(u,j-l), l<j<k.

I.B.(2) When j=l, Y(u,l)>0 (Corollary 1) and Y(u,0)=0.

I.H.(2) Assume that Y(u,j) > Y(u,j-1), l<j<b.

I.S.(2) We need to show that Y(u,b) > Y(u,b-1).

Case (i) Z(u,b) > Z(u,b-1) and X(u,b) = X(u,b-1):

In this case, it is readily seen that Y(u,b) > Y(u,b-l).

A

Case (ii) Z(u,b) = Z(u,b-1) and X(u,b-1) < X(u,b) =

[X+B-A-C+DJ (u+l,b):

This case is not possible. To see this, suppose that this

case is possible. Let a > u be the largest a for which

Z(a,j)=Z(a,j-l) and X(a,j-l)<[X+B-A-C+D(a+l,j) (3.12)

for some j. Let c be the smallest j for which (3.12)

holds. Note that c > 0. So,

Z(a,c)-Z(a,c-l) and X(a,c-l)<[X+B-A-C+D](a+l,c). (3.13)

Since X(a,c-1) > 0, it follows from Eqs. (3.10) and

(3.13) that X(a,c) > 0. Assume that

Z(a,c) = Z(a,c-l) = Z(a,c-2) .... = Z(a,v) 0 Z(a,v-l).

Then, it follows from our choice of a and c that

X(a,c-1) = X(a,c-2) =... = X(a,v).

If v - 0, then 0 = Z(a,v) = Z(a,c) _> X(a,c) > 0. Hence, v
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0. Now, from the choice of v, we get

Y(a,v) = Z(a,v) - X(av)

< [Z+B-C](a+1,v) - [X+B-A-C+D](a+l,v)

=[Y+A-D](a+1,v). (3.14)

Also,

X(a,c-1) < [X+B-C-AID](ai-1,c),

and

Z(a,c-1) > [Z+B-C](a+l,c).

So,

Y(a,v) =Y(a,c-1) > [Y-iA-D](a+1,c).

Substituting into (3.14) yields:

[Y+A-D](a+1,v) >[Y+A-D(ai.,c)

or,

Y(a+l,v) > Y+A-D](a-1,c) - [A-D](a+l,v)

>Y(a+1,c) (Eq. (3.1) and definition of D)

But, a + 1 > u and so from I.H.(1), it follows that

Y(a+l,c) > Y(a+1,c-1) > ... > Y(a+1,v).

So, case (ii) is not possible.
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Case (iii) Z(u,b) = [Z+B-C](u+l,b) and X(u,b) =[X+-

A-C+D)(u+lb):

Now, Y(u,b) = [Y+A-D)(u+l,b). Suppose that

Z(u,b-1) = Z(u,b-2) = Z(u,v) # Z(u,v-1). (3.15)

From the proof of case (ii), it follows that X(u,b-l)

X(u,b-2) = ... = X(u,v). So, Y(u,b-l) = Y(u,v). If v = 0,
then Y(u,b-1) = Y(u,0) = 0 < Y(u,b). If v # 0, then

Y(u,b-1) = Y(u,v)

< [Y+A-D](u+Il,v) (Eqs. 3.15, 3.6, 3.10)

< Y(u+l,b)+[A-D](u+l,v) (I.H.(1))

< [Y+A-D](u+l,b) (Eq. 3.1)

- Y(u,b). C]

We are now ready to describe our preemptive scheduling

algorithm. The jobs will be scheduled in k phases. In

phase j we determine the amount of each job i thrat is to be

scheduled from cj_ 1 to cj. Once this amount has been deter-

mined, the actual schedule from c j 1 to cj is constructed

using the Kafura-Shen algorithm.

Procedure COMPUTEW determines the amount wi of job i

that is to be scheduled from c0 to cl. In this procedure,

R denotes the amount of idle time remaining on processor
classes 1, 2, ... , s following the scheduling of the wis

corresponding to jobs in job classes 1, 2, ... , s. Lemma 4

obtains some interesting properites of R.. When actually

implementing COMPUTEW, the subscripts on h, R, and Q may be
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line Procedure COMPUTEW

//wi is the amount of job i to be processed from

c0 to clll
1 R0 <- 0

2 for s <- 1 to r do //consider jobs by classes//

3 Qs <- j I A(s,j) + Y(s,j) < Rs 1 + C(s,l)1
4 if Os = then print('infeasible job set')

5 stop endif

6 hs <- max[ j i j 4 Q )

7 case

8 :(i) hs = k: w i <- a(i,k), Ns_ 1 < i < Ns
9 :(2) hs <k, A(s,hs+1)+Y(s,hs)>R s- _+C(s,1):

10 set w. such that1

a(i,hs)<w ia(i,hs+1), Nsl<i<Ns and

Ns

.= wi+Y(s,hs ) = Rs-+C(s,l)
S-1

11 :(3) else: w i <- a(i, h s + 1), Ns<i<Ns

12 end case
Ns

13 Rs <- Rs_ + C(s,1) - z wi
N 1

14 end for

15 end COMPUTEW

Figure 3.2

omitted. We have kept them in the version given in Figure

3.2 so that we may easily refer to the values of h, R, and 0

during different iterations of the for loop. One should

also note that in case (2), since A(s,h s+l) + Y(s,hs)
R + C(s,l) and A(s,h s) + Y(s,h s) < Rs 1 + C(s,l), there

exist wi, a(i,h s ) < wi a(i,hs+l), such that
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Ns
Nsa w. + Y(s,h ) R l+C~')

NS 1 +1~sl)

These wi s are easily determined by first setting all w i =

a(i,hs), Ns 1 iN and then incrementing the wis one by one

(up to at most a(i,hs+l)) until the desired equality is

satisfied.

r r
Lemma 4: If 5 B(ic(i))< C(i,o(i)) for every 04w, then

i=l i1

(1) Qs and hs > 1, 1 < s < r.

(2) R s _ Y(s, hs), 1 < s < r.

(3) R s < Y(s,hs+l) if h s k, 1 < s < r.

Proof: Assume that

r r
B(i,0(i)) < k C(i,0(i)) (3.16)

i=l i=l

for every Y 4 ft. In particular, using a(i) = 0, 1 < i < r
r

in (3.16), we obtain £ B(i,O) < 0. Since B(i,0) > 0, 1 < i
i=l

( r, it follows that B(i,0) = 0, 1 < i < r and so b(i,O) -

0, ti  di-c , and b(i,l) < cl-c 0 , I < i < n. Hence,

A(i,l) = B(i,l), 1 < i < r. From this and Eq. (3.9) we

obtain

A(il)+Y(i,l) = B(i,l)+Z(i,l), l<i<r. (3.17)

Now we shall show (1), (2), and (3) by induction on s.

I.B. From (3.3) and (3.16), it follows that Z(0,1) - 0.

From (3.6), it follows that Z(1,1) + B(1,l) - C(l,l) <

Z(0,1) < 0. Combining this with (3.17), we obtain A(1,l) +

Y(l,l) < C(1,1). Since R0 = 0, it follows that 1 4 Q1.

Hence, Q1 and hI > 1.
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N1

By definition, R = R0 + C(iL,) - I wi .  From the

N1

algorithm we see that if h = k, then w =A(,hl).1 N0 +1

But, from line 3, it follows that Y(l,h 1 ) _< R0 + C(1,l) -

A(1,h 1 ). Hence, RI>Y(l,hl). If hl<k and A(l,hl+l) + Y(1,
h)> - R + C(1,l), then from line 10, we obtain Y(l,h1 ) =

NI

R0 + C(1,1) - 2 W i . Hence, R1  Y(l,hl). Since
N0+0

wi < a(i,hl+l) in this case, I wi_<A(i,hl+l). Also, from the

definition of h1 , it follows that A(l,hl+1)+Y(l,hl+1 ) >

R +C(1,l). Hence, R < Y(l,hl+l ) .

In the third case of the algorithm, A(l,hl+1)+Y(l,hl ) <

R0+C(lI) and 1w. = A(l,hl+1). Hence, Y(l,h I) < R + C(l,1)

EI-- w i and RI>Y(I,hl). From the definition of h, and wi , it

follows that R1 <Y(l,h 1 +1) (same proof as for previous case).

I.H. Assume that (1), (2), and (3) are true for some arbi-

trary s, s = q, 1 < q < r.

I.S. We shall show that (1), (2), and (3) are true when s =

q+l.

R > Y(q,h ) (induction hypothesis)

• Y(q,l) (Lemma 3)

Z(q,l) (X(q,l)=O from Eqs. 3.16 and 3.9)

> [Z+B-C](q+l,l) (Eq. 3.6)

- [Y+A-C](q+1,1). (Eq. (3.17))

Hence, 1 4 Qq+l and so Qq+l # S and hq+l > 1. (2) and (3) AMi
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can now be proved in the same way as in the induction base.
[]

Before establishing the correctness of our scheme to

compute the wis, we obtain some relationships concerning the

amount of processing t'i of job i that remains to be done

following time c 1  Note that t' m ti - w1  1 < i < n.

Define b(i,j), a'(i,j), B'(i,j), and A'(i,j) to be the

values obtained for b, a, B, and A when t'i is used in place

of ti. Let C'(i,j) = (Mi-Miil)(cj-cl) , l<i<r, lj<k, andNi
W(i) -w , l<i<r. Lemmas 5 and 6 enable us to estab-q=Ni.~ -

lish Theorem 1.

Lemma 5: If the condition of lemma 4 is satisfied then

(1) B'(i,j) < B(i,j)-A(i,j), j < h.

(2) B'(i,j) = B(i,j)-W(i), j > h.

Proof: It is easy to see that for any job q, 1 < q < n,

b'(q,j) = max[0, b(q,j)-w q.

When J . hi, a(q,j) < a(q,hi) (from Eq. (3.1)). From the

algorithm, we see that wqha(q,hi) in cases (1) and (2) and
w q - a(q,hi+l ) in case (3). Hence, in all cases, we have

W >a(q,j), Ni_l+l < q < Ni , j < hi . For B'(i,j), j i hi,

we now obtain

Ni
B'(i,j) - b'(q,j)

q=N i l +1

- imax(0, b(q,j)-w q
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< Emax(0, b(q,j)-a(q,j))

= (b(q,j)-a(q,j)) (as b(q,j)>a(q,j)>0)

=B(i,j) - A(i,j).

We now consider the case j > hi k. From cases (2)

and (3) of the algorithm, Eq (3.1), and the definition of

a(q,j), we see that

So,

b'(qj) =max[0, b(q,j)-w q b(q,j)-w.

Hence,

B'(i,j) = B(i,j)-W.i). E

For convenience in proving the next lemma, we define

h - 1.
0

Lemma 6: If 2 B(i,d'(i))< I C(i,aY(i)) for every or .4 r, then
i=1 =

the following are true for every s, 0 < s < r and every dY

such that a (s) > 1

(1) jBl(i,crji)) + Z(s,a'(s)) R- R< iC(,~i

(2) If (7(9)h ,then Bioi)+sct))<

Proof: Assume that
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r r
SB(i,a(i))< C(i,a(i)) for every C6'4 1. (3.18)

We shall use induction on s.

I.B. From (3.3), we obtain

r r
Z(0,o'(0)) = max jB(i,al(i))- 1 C(i,a'(i))X3.19)

(Y(Oi) i=l

Using &Y such that or'(i) = 0, 0 < i < r in (3.18) yields
B(i,0) =0 and hence tq < dq-O 1 < q < n. From (3.5),

(3.18) and (3.19), we now get Z(0,a(0)) = 0. From Corollary

1 and (3.11), we get 0 =Z(0,8i0)) > X(0,aOi)) > 0. Hence,

X(0, (1(0)) = 0.

0 0
Clearly, R 0~,'() = ~~~) 0.

Hence, when s = 0,

S s

izi- l

and

s S

SB' (i,d'(i) )+X(s,C(s)) < C' i,er(i))

for every (Y 4 Vt.

I.H. Assume that (1) and (2) are true for s = t, where t is

in the range 0 _ t <r.

- -I.S. We proceed to establish (1) and (2) when s =t+1 by

considering the three cases a(t+1) > ht+1 ; I5(t+l) < ht+l and

a(t) <h t ; and ait+l) < h ~ and att) > ht.
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Case 1: ajt+l) > ht+1 : We first obtain the following

t t
SB'(i,aji)) + Z(t,ajt)) -R t < 'iai) (..

R t- Rt+i = W(t+l) - C(t+l,l) (def. of Rt+i)

B'(t+l,ajt+l)) + W(t+l) = B(t+l,ajt+l)) (Lemma 5)

Z(t+l,a(t+l))+B(t+l,d(t+l) )-C(t4-l,a(t+l))

<z(t,a'(t+1)) (Eq.(3.6) and ojt+l) >1)

* z(t,a(t)) (a(t)>a(t+l) and Eq.(3.6))

Adding these four equalities and inequalities yields:

t+l l
jB'(i,aji))'+ z(t+l,atil)) - R -~ C'(i,aji))

Case 2: di~t+l) < ht~i and CMt < ht: From the induction

hypothesis, we have

B'(~a~))X~tcr~))< £C'(i,aji)). (3.20)'

From Eq.(3.10) and the fact that dr(t) > a(t+l) > 1, we get:

x(t,ojt)) > X(t,a'(t+l)) > [XiB-A-C+D](t+l,a(t+l)).

f Using Lemma 5, this reduces to

X(t,a(t)) > x(t+l,ajt+l))+B'(t+l,a(t+l))-c'(t+l,ajt+l)).

Combining with (3.20) yields:
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t+l t+l
B'(i,a(i)))+X(t+l,a(t+l)) < j C'(i,a(i)). (3.21)i=1 --i=1

Since Rt+ 1 >Y(t+l,ht+l) > Y(t+l,a(t+l)) (Lemmas 4 and 3)

we conclude that Z(t+l , a(t+l)) - Rt+ 1 ( X(t+l,Y(t+l)).

Substituting into (3.21) yields

t+l t+lB'(i'a(i))+Z(t+l' Y(t+l))-Rt+l < z C'(i,a(i)).
i=1 t il l

case 3: a(t+l) < h and C(t) > h From the inductiont+1
hypothesis, we get

t tB'(i,a(i))+Z(t,a(t)) - Rt  < C'(i,dr(i)). (3.22)
1=1 i=l

Since ht # k, we obtain from Lemma 4:

Rt ± Y(t,ht+l) < Y(t,6(t)). (3.23)

From Lemma 5, Eq. (3.10), and the inequality d(t) > a(t+l) >

1, we get

[X+B'-C'](t+I,a(t+l)) < X(t,a(t+l)) < X(ta(t)).(3.24).

Adding (3.22), (3.23), and (3.24) yields:

t+l t+lB'(i,a(i))+X(t+l,a(t+l)) < C'(i,a(i)).
i-i - i=l

Using the same reasoning as in case 2, we may now conclude

the truth of (1) when s = t+l. []

Theorem 1: There exists a feasible preemptive schedule for

the given n jobs if and only if

r r
B(i,a(i)) < £ C(i,a(i)) for every a 4 k'
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Proof: We have already pointed out that if a feasible

schedule exists, then the above inequality is satisfied for

every 7 4 Wrk. So, we need only show that when the above

inequality is satisfied for every a 4 V k' there is a feasi-

ble schedule. Assume that

r r
SB(i,oi)) _ C(i,cr(i)) for every a4 w k. (3.25)

i=l i=l

From (3.25) it is clear that when k = 1, the tis and Eq

(1.1) yield f* < c1 -C0 and so a feasible schedule exists.

For the induction hypothesis, we assume that there

exists a feasible schedule when (3.25) is satisfied and k=q

for some q, lq. We show that if (3.25) is satisfied when

k=q+l, then there is a feasible schedule. From Lemma 4, we

see that Qs s for any s. Hence procedure COMPUTEW suc-

cessfully computes the wis. It is clear from COMPUTE W that

wi.a(i,u)<cl-c0 where u = hs+l or q+l and that i W1

Ma(cl-c0 ) - Rs < Ms(cI-c 0 ) for every s. Hence, the wis

satisfy (1.1) (i.e., f* < c1 - c0 ) and may be scheduled from

c0 to c1 using the Kafura-Shen algorithm.

Now, consider the t'is. We know that X(r,j) = Z(r,j)

0, 0 < j < q+l. If h r<q+l, then from Lemma 4, we obtain 0

R r Y(r,hr +1) = 0 or Rr = 0. Using this in Lemma 6

yields:

r r

<B'(i,(i)) I C'(i,d(i)) for every d 4 "q+l
isl -- i=l

such that a(r) > 1. (3.26a)

If h r-q+l then a(r) < hr and from Lemma 6 we once again get:
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r r
B B'(i,a(i)) < j C'(i,a(i)) for every 8r 4q+l

i-i 1=1

such that (r) > 1. (3.26b)

One readily sees that (3.26a) and (3.26b) are equivalent to

r r
i B'(i,a(i)+l)_i C'(i,o(i)+l) for every a4wq. (3.27)

Following the scheduling from c0 to cl, we are left
with the problem of scheduling the t'is from cl to cq+l.

The number of distinct due times is now q (note that t'i =

for every i such that di = cl). Relabel the start time c.

as c'o and the due times c2 ' ..... Cq+l as c'l, .... C'q. Define

b"(i,j), B"(i,j), and C"(i,j) to be the values obtained for

b, B, and C when t'i is used in place of ti and c'j is used

in place of c. We immediately see that B"(i,j) =

B'(i,j+l), and C"(i,j) = C'(i,j+l), for every i, j, l<i<r,

0<jq. Substituting into (3.27) yields:

r r
B"(i,cX(i)) < 1 C"(i,d(i)) for every a 4 iq'

i=l -i=l

It now follows from the induction hypothesis that the t'is

can be scheduled. []

From Theorem 1, it is clear that by repeatedly using

COMPUTEW to determine the amount to be scheduled in each

interval, a feasible schedule can be obtained whenever such

a schedule exists. Each time COMPUTEW is used, we need to

recompute b, a, Z, X, and Y. The time needed for this is

O(nk)(note that recurrences 3.6 and 3.10 will be used to

compute Z and X). The for loop may be executed in O(kr + n)

time. We may assume that r < n and so the complexity of

COMPUTEW is O(kn). The Kafura-Shen algorithm is of
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complexity O(n). Hence, the overall computing time for the

k phases of our scheduling algorithm is O(k2n). An addi-

tional O(nlogn) time is needed to sort the jobs by memory

size mi. Hence, the overall complexity of our preemptive

scheduling algorithm is O(k 2n + nlogn).

4. Minimizing Lmax

Let S be a preemptive schedule for (tidi,mi), 1 < i < n.
Let fi be the finish time of job i in S. If

fi < di, 1 < i < n then S is a feasible schedule and no job

is late. The lateness of job i is fi-di and

Lmax = max[fi-di : l<icnl. Note that <ax < 0 iff all jobs

finish by their due times. Also, note that if Lmax 0 then

c0 -c ma x

From the definition of Lmax, if follows that by chang-

ing the release time from c0 to co-Lmax we obtain a job set

that can be scheduled such that no job finishes after its

due time. Hence, to determine the minimum Lmax' we need to

determine the least x such that the condition of Theorem 1

is satisfied when a release time of c0 -x is used. This x

may be obtained from a form equivalent to that of Theorem 1.
r r

We observe that £ B(i,a(i))< 1 C(i,a(i)) for every Y 4 w
i=l i=l

r r
iff max[ I B(i,a(i))- 1 C(i,o(i))} 4 0. It is helpful to

a4W i=l i=l
rewrite this form seperating out the case when a(i)=0, 1 < i

r r
< r. For this a, we see that j B(i,o(i)) - i C(i,o(i)) =

-- i=l i=l
n
lb(i,0). For every other or, there is an s, 1 < s < r such
1
that 0 (s) > 1.

Define H as below:

s sH8 max ( B(i,O'(i))- C(i,o(i))), l'sr.
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We immediately see that

r r
max[ i B(i,O(i)) - j C(iG'(i))
cy4 jl i-

n
- max(lb(i,0), Hj, H2 ,..., Hr1

1

Let x 1 max [ti - d i + co) and let x2 - max
1<i<n l<i<rIH i/mi).-___

Clearly, if we change the release time to c0 -max~xX 21

then max[ lb'(i,0), H' I, H'2  . H' r = 0 (the b', H'

values are computed with respect to the new release time

c0 -maxfxl,x2)). Hence, max a 4 T(Z B'(id(i)) - f C'(ia(i))}

< 0 and B'(i,d(i)) < 1 C'(i,d(i)) for every a 4 w. Moreo-

ver, x = max~xl, x2 } is the least value of x for which this

happens. Hence,

(L max)min = max[xl,x 2 l.

The HsS may be computed in O(kn) time as follows.

Define H as below:
5

H= max B(j,c(j)) - C(j,d(j))} l<s<r, l<i<k.
(74w j=l j=l

Hence, H = H, 1 < s < r. We immediately obtain the fol-

lowing recurrence for Hi:Sfm nax[B(1,j) - C(I,j)} if s = 1

Is s

Hi 1 I B(j,k) - C(j,k) if i - k
s j=l j=l

max[H'_ +B(s,i)-C(s,i), H otherwise.

.. . . . . 1 . . .i i . . . . . . . .s . . . . . . . - . . . .. . . . . . . .
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Using this recurrence, all the Hi s may be obtained in
s

O(rk) time (excluding the time needed to determine the

b(i,j)s, B(i,j)s etc.). The additional time needed to com-

pute the B(i,j)s and C(i,j)s is O(kn + nlogn) (assuming n >

m). Hence, the minimum Lmax may be determined in O(kn +

nlogn) time. Having determined the minimum Lmax' a schedule

having this Lmax value can be obtained by chaning c0  to

c0-(Lmax)min and using the algorithm of Section 3.

5. Conclusions

We have developed an O(k2n + nlogn) algorithm to obtain a
preemptive schedule for n jobs (ti di,mi) , I < i < n on m

processors with given memory sizes. This schedule

minimizes Lmax .  The minimum value of Lmax can itself be

obtained in only O(kn + nlogn) time.

I
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